Background

Japan's GHG net zero by 2050, requires taking quick action.

Fossil fuel power plants produce a lot of GHG emissions.

Problem

- 1. RES 100% is impossible
- 2. Only the reduction of CO2 is not enough to evaluate the GHG net zero

Problems Cost is cheap, GHG is high

Proposal methodology of UC - LCA

- 1. $OF_{cost} = \min \sum_{t=1}^{24} \sum_{i=1}^{11} [FC + SC_i \cdot u_{i,t} (1 u_{i,t-1})]$
- 2. $OF_{LCA} = \min \sum_{t=1}^{24} [K_{i,LCA}^{(S)} \times g_{i,t} \times u_{i,t}]$

Solutions:

- 1. Fossil fuel balance combination: Oil, LNG and Coal
- 1.2. Hybrid System: Thermal Power + PV
 - 2. Life Cycle Assessment (LCA) to evaluate GHG net zero

	Cost	CO2	All impacts
ω	\times 10 ⁹ JPY	\times 10 ⁶ [kg]	$\times 10^6 \text{ JPY}$
0.000	1.957	58.867	244.07
0.475	1.367	62.239	277.96
1.000	1.069	68.031	327.63

