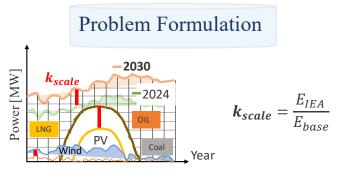

Background

Japan plans to increase PV and wind to 36–38% by 2030 under the Announced Pledges Scenario.

■ Despite the growth of RE, fossil fuels are still main power source → produce a lot of GHG emissions.

Challenges

Much of the **RE** is wasted (curtailed) when generation is higher than demand

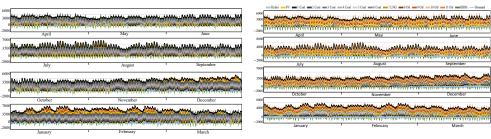


Proposal Solutions

- **1.** Reduce wasted RE with optimal UC schedule
- 1.2. Hybrid System: Thermal Power + PV + Wind + Hydro
 - 2. LCA-based clean operation planning

Result

Epsilon (ε) – Constraint Method


$$\min f_1(x) = OF_{cost}$$
 $s.t$ $f_2(x) \le \varepsilon (OF_{LCA})$

Operation Cost

1.
$$OF_{cost} = \min \sum_{t=1}^{24} \sum_{i=1}^{11} [FC + SC_i \cdot u_{i,t} (1 - u_{i,t-1})]$$

LCA: Life Cycle Assessment

2. $OF_{LCA} = \min \sum_{t=1}^{24} [K_{i,LCA}^{(S)} \times g_{i,t} \times u_{i,t}]$

APS-style PV and wind expansion reduces emissions but increases material and land impacts.

Cost Comparison by APS scale of 2023 and 2030/2035/2050

APS Scenarios	By Year	Base year 2023	2030	2035	2050
Operation Cost	10 ¹¹ JPY	2.95	-7.1%	-22.7%	-8.1%
Climate Change	10 ¹⁰ kg	2.53	-3.6%	-11.1%	-7.1%
Air pollution	10 ⁷ kg	2.00	-2.5%	-7.5%	-7.5%
Land Use	$10^8 \ m^{2y}$	0.49	+46%	+108%	+233%
Human Health	10 ³ DALY	6.44	-3.1%	-9.6%	-7.3%
Endpoint Cost	10 ¹¹ JPY	1.23	-0.8%	-0.8%	+8.9%

Cost decreases due to RE and coal usage and lower fuel price dependence.